شبکه های عصبی شعاعی آموزش یافته بر پایه متغیرهای مدلهای آماری و مقایسه آنها در پیش بینی ورشکستگی
نویسندگان
چکیده مقاله:
امروزه شبکه های عصبی مصنوعی جایگاه ویژه ای در حیطه مالی پیدا کرده است. پژوهش حاضر به دنبال یافتن روش بهتر برای ساخت و آموزش شبکه های عصبی مصنوعی است که منجر به پیش بینی دقیقتر در موضوع ورشکستگی شود. در این میان سه شبکه عصبی از نوع توابع شعاع مدار ساخته شد که به صورت جداگانه توسط متغیرهای مدل آلتمن (1983)، اسمایوسکی (1984) و ترکیبی آموزش داده شدند. پس از سنجش توانایی سه مدل در پیش بینی ورشکستگی با استفاده از آزمون دقیق فیشر و مک نمار، دقت آنها مورد مقایسه قرار گرفته است. نمونه مورد آزمون شامل شرکتهای عضو بورس اوراق بهادار تهران در بین سالهای 1383 تا 1390 میباشد. یافتهها نشان میدهند که هر سه مدل توانایی پیش بینی ورشکستگی را دارند و از بین آنها مدل آموزش یافته با متغیرهای مدل آلتمن دقیقتر از دو مدل دیگر قادر به انجام این امر است.
منابع مشابه
شبکه های عصبی شعاعی آموزش یافته بر پایه متغیرهای مدل های آماری و مقایسه آن ها در پیش بینی ورشکستگی
امروزه شبکه های عصبی مصنوعی جایگاه ویژه ای در حیطه مالی پیدا کرده است. پژوهش حاضر به دنبال یافتن روش بهتر برای ساخت و آموزش شبکه های عصبی مصنوعی است که منجر به پیش بینی دقیق تر در موضوع ورشکستگی شود. در این میان سه شبکه عصبی از نوع توابع شعاع مدار ساخته شد که به صورت جداگانه توسط متغیرهای مدل آلتمن (1983)، اسمایوسکی (1984) و ترکیبی آموزش داده شدند. پس از سنجش توانایی سه مدل در پیش بینی ورشکستگی...
متن کاملمقایسه نتایج مدلهای آماری و شبکه عصبی در پیش بینی تعداد تصادفات در تقاطعات
تصادفات ترافیکی از عوامل بسیار مهم مرگ ومیر بوده و خسارات و آسیب های شدید جانی و مالی در پی دارند.. تصادفات همچنین آثار و تبعات سنگین اجتماعی، فرهنگی و اقتصادی دارند که موارد ناشی از آنها جوامع بشری را به شدت تاثیر قرار می دهد. اگرچه گسترش روزافزون ترافیک در شهرها موجب افزایش مزایای اقتصادی و رفاهی شده ، اما در مقابل، تعداد و شدت تصادفات ترافیکی را افزایش داده است. براساس مطالعات انجام شده، بخش...
متن کاملکاربرد مدلهای شبکه عصبی در پیش بینی ورشکستگی اقتصادی شرکتهای بازار بورس
یکی از پیشرفته ترین مدلهای پیش بینی کننده ورشکستگی٬ مدل «شبکه عصبی مصنوعی» است. مطابق نتایج تحقیق ساختار اصلی پرسپترون سه و چهار لایه برای پیش بینی ورشکستگی شرکتها به مدلهایی شبیه یکدیگر منتهی می شود که در این میان شبکه سه لایه از قدرت پیش بینی بیشتری نسبت به شبکه چهار لایه برخوردار است.این تحقیق نشان می دهد که «به کارگیری مدلهای مبتنی بر شبکه عصبی توانایی مدیریتهای مالی را برای مقابله با نوسان...
متن کاملمقایسه نتایج مدلهای آماری و شبکه عصبی در پیش بینی تعداد تصادفات در تقاطعات
تصادفات ترافیکی از عوامل بسیار مهم مرگ ومیر بوده و خسارات و آسیب های شدید جانی و مالی در پی دارند.. تصادفات همچنین آثار و تبعات سنگین اجتماعی، فرهنگی و اقتصادی دارند که موارد ناشی از آنها جوامع بشری را به شدت تاثیر قرار می دهد. اگرچه گسترش روزافزون ترافیک در شهرها موجب افزایش مزایای اقتصادی و رفاهی شده ، اما در مقابل، تعداد و شدت تصادفات ترافیکی را افزایش داده است. براساس مطالعات انجام شده، بخش...
متن کاملپیش بینی تراز آب زیرزمینی دشت شاهرود استفاده از شبکه عصبی مصنوعی تابع پایه شعاعی
Groundwater level prediction is an important issue in scheduling and managing water resources. A number of approaches such as stochastic, fuzzy networks and artificial neural network have been used for such prediction. A neural network model has been employed in this research for Shahrood plain groundwater level prediction. For this reason, statistical parameters of groundwater level fluct...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 2 شماره 7
صفحات 149- 166
تاریخ انتشار 2013-07-16
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023